当前位置:首页 / 鼻咽癌患者治疗前疾病不确定感的潜在剖面分析
论著·临床研究 | 更新时间:2025-07-01
|
鼻咽癌患者治疗前疾病不确定感的潜在剖面分析
Latent profile analysis of pre⁃treatment disease uncertainty in patients with nasopharyngeal carcinoma

广西医学 页码:707-713

作者机构:何艾恩,在读硕士研究生,主管护师,研究方向为肿瘤护理、心理护理。

基金信息:广西科技重大专项项目(桂科AA22096032)

DOI:10.11675/j.issn.0253⁃4304.2025.05.11

  • 中文简介
  • 英文简介
  • 参考文献

目的 探讨鼻咽癌(NPC)患者治疗前疾病不确定感的潜在类别及其影响因素。方法 采用便利抽样法选取于南宁市某三级甲等医院首次住院治疗的260例NPC患者作为研究对象,采用一般资料调查表、Mishel疾病不确定感量表、疾病感知问卷简化版、领悟社会支持量表在患者入院48 h内进行调查。运用潜在剖面分析探索NPC患者治疗前疾病不确定感的潜在类别。基于潜在类别分析结果,采用二元Logistic回归模型分析NPC患者治疗前疾病不确定感的影响因素。结果 260例NPC患者治疗前Mishel疾病不确定感量表总分为(74.68±11.60)分,其中90.8%患者存在中等及以上水平疾病不确定感。通过潜在剖面分析,可将NPC患者治疗前疾病不确定感分为“低疾病不确定性⁃复杂性组”“高疾病不确定性⁃复杂性组”2个潜在类别。二分类Logistic回归分析结果显示,年龄、疾病感知、文化程度、社会支持是NPC患者治疗前疾病不确定感的影响因素(P<0.05)。结论 NPC患者治疗前疾病不确定感水平偏高,且存在明显的分类特征。年龄、疾病感知、文化程度、社会支持可影响NPC患者治疗前的疾病不确定感水平。

Objective To explore the latent classes of pre⁃treatment disease uncertainty in patients with nasopharyngeal carcinoma (NPC) and their influencing factors. Methods A convenience sampling method was adopted to select 260 NPC patients admitted for the first time to a class Ⅲ level A hospital in Nanning as the research subjects. General information questionnaires, Mishel's Uncertainty in Illness Scale, Brief Illness Perception Questionnaire, and Perceived Social Support Scale were administered within 48 hours of admission. Latent profile analysis was employed to identify the latent classes of pre⁃treatment disease uncertainty in NPC patients. Based on the results of latent classes analysis, binary Logistic regression model was used to analyze the influencing factors for pre⁃treatment disease uncertainty in NPC patients. Results The total score of Mishel's Uncertainty in Illness Scale among 260 NPC patients before treatment was 74.68±11.60, with 90.8% of patients exhibiting moderate or higher levels of disease uncertainty. Through latent profile analysis, the pre⁃treatment disease uncertainty of NPC patients could be divided into two latent classes as follows: low disease uncertainty⁃complexity group and high disease uncertainty⁃complexity group. The results of binary Logistic regression analysis revealed that age, illness perception, educational level, and social support were the influencing factors for pre⁃treatment disease uncertainty in NPC patients (P<0.05). Conclusion NPC patients exhibit high levels of disease uncertainty before treatment, with distinct classification characteristics. Age, illness perception, educational level, and social support can influence the level of pre⁃treatment disease uncertainty in NPC patients.

25

浏览量

1

下载量

0

CSCD

工具集