当前位置:首页 / 麻风的常规诊断方式及基于人工智能的诊断模型
| 更新时间:2025-07-01
|
麻风的常规诊断方式及基于人工智能的诊断模型
Conventional diagnostic methods and diagnostic model based on artificial intelligence of leprosy

广西医学 页码:674-678

作者机构:张肖睿,在职硕士研究生,住院医师,研究方向为皮肤组织病理学诊断研究。

基金信息:广西医科大学第一临床医学院教改课题(2024QYYA06)

DOI:10.11675/j.issn.0253⁃4304.2025.05.06

  • 中文简介
  • 英文简介
  • 参考文献

麻风是麻风分枝杆菌/弥散型麻风分枝杆菌引起的慢性、传染性肉芽肿性疾病,主要通过多菌型麻风患者传播,具有数月至20年的潜伏期。尽管多种药物治疗的应用使麻风患者大幅度减少,但麻风在热带地区仍然是重要的公共卫生问题,仍有许多人罹患麻风或面临罹患麻风的风险。麻风早期缺乏特异性的症状,诊断方式缺乏金标准,因此该病的快速识别面临诸多挑战,许多患者被诊断麻风时已经出现了不可逆的畸形及残疾,这也无形中导致了人群之间麻风的传播。早期识别麻风非常重要,也十分具有挑战性,而人工智能恰巧在图像识别、数据整合及预测分析上具有极大的优势,在麻风的防治方面展现出巨大的应用潜力和广阔的发展前景。本文阐述麻风的常规诊断方式及其局限性,并总结了人工智能在麻风诊断领域的研究进展及面临的挑战。尽管人工智能在算法的优化、数据集的补充及伦理问题等方面仍存在挑战,但随着技术的更迭及创新,未来人工智能在麻风诊断领域的应用仍值得期待。

Leprosy is a chronic, infectious granulomatous disease caused by Mycobacterium leprae or Mycobacterium lepromatosis, primarily transmitted through multibacillary leprosy patients, with an incubation period ranging from months to 20 years. Although the use of multi⁃drug therapy has significantly reduced the number of leprosy cases, the disease remains a major public health issue in tropical regions, with many individuals still affected or at risk of infection. Early⁃stage leprosy lacks specific symptoms, and the absence of a gold⁃standard diagnostic method poses significant challenges for rapid identification. Many patients are diagnosed only after developing irreversible deformities and disabilities, which inadvertently contributes to ongoing transmission. Early detection of leprosy is crucial yet highly challenging. Emerging artificial intelligence technologies, with their strengths in image recognition, data integration, and predictive analysis, hold immense potential and broad prospects for leprosy prevention and control. This paper outlines conventional diagnostic methods for leprosy and their limitations, while also summarizing research progresses and challenges in artificial intelligence⁃driven leprosy diagnosis. Although obstacles remain, such as algorithm optimization, dataset expansion, and ethical concerns, the continuous evolution and innovation of artificial intelligence technologies promise a worth expecting future for its application in leprosy diagnosis.

17

浏览量

1

下载量

0

CSCD

工具集