当前位置:首页 / 人工智能辅助肿瘤临床诊疗决策的现状及挑战
| 更新时间:2025-11-05
|
人工智能辅助肿瘤临床诊疗决策的现状及挑战
Current status and challenges of artificial intelligence⁃assisted clinical diagnosis and treatment decision⁃making in oncology

广西医学 页码:1385-1390

作者机构:徐蔚然为第一作者,孙春光为共同第一作者。

基金信息:教育部产学合作协同育人项目(2506193449);虚拟现实技术与系统全国重点实验室(北京航空航天大学)开放课题(VRLAB2025C15);首都医科大学附属北京天坛医院院内科研基金(管理专项,TYGL202402)

DOI:10.11675/j.issn.0253⁃4304.2025.10.01

  • 中文简介
  • 英文简介
  • 参考文献

人工智能(AI)技术的迅猛发展正在深刻改变肿瘤学领域的临床诊疗决策模式。基于大数据和机器学习的临床诊疗决策支持系统正逐步应用于肿瘤预防、诊断与治疗的各个环节,为肿瘤学带来新的机遇。在肿瘤诊疗过程中,AI展现出提升筛查诊断能力、优化治疗方案及降低医生重复劳动等优势,有望提高肿瘤诊疗的规范化和个体化水平。然而,目前AI在肿瘤临床应用中也面临诸多挑战,包括模型可解释性不足导致的医患信任问题、系统与医院现有信息系统兼容困难、数据孤岛效应及患者数据隐私安全顾虑等。这些问题在一定程度上阻碍了AI在肿瘤学领域的大规模应用。本文就AI辅助肿瘤临床决策的现状及面临的挑战进行综述,并提出基于专病知识和临床指南进行大语言模型微调、构建更高效的多模态数据融合智能辅助决策系统等应对策略。

Rapid advances in artificial intelligence (AI) technology are deeply changing clinical diagnosis and treatment decision⁃making model in oncology field. Clinical diagnosis and treatment decision support systems built on big data and machine learning are being implemented across various links such as cancer prevention, diagnosis and treatment, creating new opportunities for oncology. In the process of tumor diagnosis and treatment, AI has demonstrated advantages throughout improving screening and diagnostic capabilities, optimizing therapeutic regimen, and reducing in repetitive clinician workload, which is expected to enhance the standardization and individualization levels of tumor diagnosis and treatment. Nevertheless, multiple challenges remain for AI clinical application in oncology, such as limited model interpretability undermining clinician⁃patient trust, difficulties integrating with existing hospital information systems, persistent “data silos” , and concerns about patient data privacy and security. These issues hinder large⁃scale application of AI in oncology field. This review summarizes the current status and challenges of AI⁃assisted clinical decision⁃making in oncology and proposes strategies to address existing gaps, including fine⁃tuning large language models with disease⁃specific knowledge and clinical guidelines, and building more efficient multimodal, data⁃fusion intelligent⁃assisted decision support systems.

110

浏览量

223

下载量

0

CSCD

工具集